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Abstract: The industrial sectors such as automotive, aerospace, 
aircraft and train companies realize a need to replace monolithic 
metals (steel and cast iron) with lighter high-strength alloys. A new 
class of material, the aluminium based metal matrix composites (Al-
MMCs) have been identified. These composites possess better 
physical and mechanical properties with its low density. The uses of 
low weight, high strength mechanical components lead to a reduction 
in the fuel consumption and environment impact. 
The presence of ceramic particles in aluminium based metal matrix 
composites make it difficult to machine, and consequently they find 
limited applications in the aforesaid industries. While machining of 
metal matrix composites the ceramic particles are pulled out and rub 
over the machined surface and also increase the abrasion wear on 
tool surfaces. The MMCs reinforcement particles are very hard and 
produce a fast tool wear rate, which leads to the increase in the 
cutting forces, surface roughness and a reduction in the material 
removal rate. So for the economy of machining (turning, milling, 
drilling, threading) there exists a need to optimize the machining 
parameters for the attainment of the multi-objective function of high 
material removal along with better surface finish. 
Present work focuses on application of principal component analysis, 
grey relation theory combined with Taguchi’s robust design. This 
technique is used for optimization of process parameters for the 
achievement of multi-objectives simultaneously. Surface roughness, 
cutting force and material removal rate (MRR) are taken as output 
responses in straight turning of aluminium based metal matrix 
composite (MMC). The aims of this study is to evaluate the most 
favorable process parameter’s combination for achieving a high 
surface finish, ensuring low cutting force and improvement in 
productivity. The multi-objective optimization problem in MMCs 
turning operation has been solved by using this new method.  

1. INTRODUCTION 

A few decades before, a new class of material named metal 
matrix composite (MMC) has been developed. This new class 
of material attains greater attention to the manufacturing of the 
various industrial components. The metal matrix composites 
are widely used in the industries like aerospace, automotive, 
aircraft, military, sports and medical. The properties like high 
strength to weight ratio, high wear resistance, high thermal 

conductivity, low thermal expansion, low density, high 
specific stiffness and high temperature resistance make it more 
desirable than monolithic material especially for designing 
components such as brake disc, piston and cylinder liners etc. 
of various industries.  

 The metal matrix composites are the special type of advanced 
materials in which the hard and stiff ceramic particles are 
reinforced. The ceramic particles generally used are SiC, 
Al2O3, TiB2, B4C and Zirconia. These ceramic particles are 
reinforced in the form of whickers or particulates, continuous 
or discontinuous fibers in the matrix metal. The matrix of 
metal can be prepared by any available suitable material, but 
aluminium, magnesium and titanium alloys are most popular. 
The aluminium based MMCs reinforced of SiC particle have 
been turned into useful materials because of their properties 
such as low weight, heat-resistant, wear-resistant and low cost 
[1]. The metal matrix composites are commonly manufactured 
by near net shape manufacturing methods and are machined 
by conventional machining [2]. The conventional machining 
(turning, drilling, milling, sawing, etc.) results in rapid tool 
wear due to the presence of hard and stiff ceramic particles. So 
while machining there is often involvement of frequent and 
expensive tool changes, resulting in additional job completion 
time. Consequently there is also an increase in machining cost. 
These reasons limit the application of metal matrix composites 
for the production of mechanical components. 

2. LITERATURE REVIEW 

Several studies have been done in order to study the 
machinability of metal matrix composites. A wide variety of 
tool materials have been tried to improve the machinability. 
While machining of MMCs the extensive tool wear was 
caused by the abrasion action of very hard and abrasive 
reinforcements [3]. Manna and Bhattacharya [4] investigated 
the machinability of Al/SiC MMC. They have found good 
surface finish at high speed with a low feed rate and depth of 
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cut condition. Sahoo et al. [5] examined the effect of process 
parameters like cutting speed, feed and depth of cut on flank 
wear and surface roughness in turning of Al/SiC metal matrix 
composites. Srinivasan et al. [6] concluded that the surface 
roughness improves with an increase in the cutting speed. 
However, at the same time increasing feed adversely affects 
the surface roughness. Kannan et al. [7] studied the effect of 
tool wear, surface roughness, and chip formation during 
machining. Sikder and Kishawy [8] observed that the increase 
in feed tends to raise the forces, and also the value of forces 
increase when the percentage of alumina increased in the 
MMCs. 

In machining, the product quality of workpiece is prime 
importance which can be directly influenced by the selection 
of cutting speed, depth of cut and feed rate. Through the 
optimization, the desired product quality with the available 
facilities can be achieved. Rajesh et al. [9] performed the 
machining of red mud aluminium based metal matrix 
composites by uncoated carbide tool. They have found that the 
Taguchi-based grey analysis was good for optimizing the 
machining parameters like cutting speed, feed, depth of cut, 
and nose radius for the desired multi responses. Lu et al. [10] 
have used the principle component analysis approach to 
simplify a large number of correlated variables into fewer 
correlated and independent principle components.  

From the literature, it is clear that very few studies have been 
carried out related to optimization of surface roughness (Ra), 
cutting force (Fc) and material removal rate (MRR) while 
machining of particulate aluminium metal matrix composite. 
The main objective of the present work is to optimize, surface 
roughness, cutting force and material removal rate during the 
machining of Al-SiC metal matrix composite using the 
recently developed methods. The present study, applied a 
Taguchi (L9) orthogonal array to plan the experiments on 
turning operations. After that, through the principle component 
coupled with a Grey relational Taguchi method, the most 
influencing factors for individual desired quality of turning 
operations have been identified. 

3. PROCEDURE ADAPTED FOR OPTIMIZATION 

The proposed optimization methodology is as follows: 

 Assuming, the number of experimental runs in Taguchi’s OA 
design is m , and the number of quality characteristics is n , 
the experimental results can be expressed by the following 
series: 1 2 3, , ,.........., ,....,i mX X X X X   

Here, 

1 1 1 1 1{ (1), (2)......... ( )..... ( )}X X X X k X n  

{ (1), (2)......... ( )..... ( )}i i i i iX X X X k X n  

{ (1), (2)......... ( )..... ( )}m m m m mX X X X k X n  

Here, iX represents the i th experimental results and is called 
the comparative sequence in grey relational analysis. 

Let, 0X be the reference sequence: 

Let, 0 0 0 0 0{ (1), (2)......... ( )..... ( )}X X X X k X n  

The value of the elements in the reference sequence means the 
optimal value of the corresponding quality characteristic. 0X  

and iX  both includes n elements, and 0 ( )X k  and ( )iX k  

represent the numeric value of k th  element in the reference 

sequence and the comparative sequence, respectively,
1,2,........,k n . The following illustrates the proposed 

parameter optimization steps in details: 

Step 1: Normalization of the responses (quality characteristics) 
There are three different types of data normalization according 
to whether we require the LB (lower-the-better), the HB 
(higher-the-better) and NB (nominal-the-best). The 
normalization is done by the following equations. 

(a) LB (lower-the-better) 

* min ( )
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( )
i

i
i

X k
X k

X k
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X k
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(c) NB (nominal-the-best) 
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i m

k n


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(3)
 

Here, 
*( )iX k  is the normalized data of the k th element in the

i th sequence 0 ( )bX k is the desired value of the k th quality 

characteristic. After data normalization, the value of ( )iX k will 

be between 0 and 1. The series 
*, 1,2,3,........, .iX i m can be 

viewed as the comparative sequence used in the grey relational 
analysis.  

Step 2: Checking for correlation between two quality 
characteristics 

Let, 
* * * *
0 1 2{ ( ), ( ), ( ), ............, ( )},

, 1, 2, ......., .
i mQ X i X i X i X i

where i n




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It is the normalized series of the i th quality characteristic. The 

correlation coefficient between two quality characteristics is 
calculated by the following equation: 

( , )

j k

j k
jk

Q Q

Cov Q Q


 



,

1,2,3......, .

1,2,3,........, .,

j n

k n

j k





  (4)  

Here, jk is the correlation coefficient between quality 

characteristic j and quality characteristic k ; ( , )j kCov Q Q  is 

the covariance of quality characteristic j and quality 

characteristic k ;
j kQ Qand   are the standard deviation of 

quality characteristic j and quality characteristic k , 

respectively. 

The correlation is checked by testing the following hypothesis:  

0

1

: 0 ( )

: 0 ( )

jk

jk

H Thereis nocorrelation

H Thereis correlation






   

Step 3: Calculation of the principal component score  

 Calculate the Eigenvalue k and the corresponding 

eigenvector ( 1, 2,......, )k k n  from the correlation matrix 

formed by all quality characteristics. 
 Calculate the principal component scores of the 

normalized reference sequence and comparative 
sequences using the equation shown below: 

*

1

( ) ( ) ,

n

i i kj

j

Y k X j 


 0,1,2,......., ;

1,2,........, .

i m

k n




  (5)  

Here, ( )iY k is the principal component score of the k th element 

in the i th series. *( )iX j is the normalized value of the j th

element in the i th sequence, and kj is the j th element of 

eigenvector k .  

Step 4: Calculation of the individual grey relational grades  

(1) Calculation of the individual grey relational coefficients: 

The following equation is used to calculate the grey relational 
coefficient between 0 ( )X k and ( )iX k . 

min max
0,

0, max

( ) ,
( )i

i

r k
k




  

  

1, 2,.........., ;

1, 2,....., .

i m

k n




   (6)  

 
Here, 0, ( )ir k is the relative difference of k th element between 

sequence iX and the comparative sequence 0X (also called 

grey relational grade), and 0, ( )ir k is the absolute value of 

difference between 0 ( )X k and ( )iX k .  
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 (9) 

 Note that  is called the distinguishing coefficient, and its 

value is in between 0 to 1. In general, it is set to 0.5. 

(2) Calculation of the overall grey relational grade: 

After the calculation of the grey relational coefficient and the 
weight of each quality characteristic, the grey relational grade 
is determined by: 

0, 0,
1

( ), 1, 2,..................., .
n

i k i
k

w r k i m


  
 

 (10) 

4. EXPERIMENTS AND DATA ANALYSIS 

The present study has been done through the following plan of 
the experiment: 

a) Checking and preparing the CNC Lathe ready for 
performing the machining operation. 

b) Performing initial turning operation in Lathe to get the 
desired dimension of the workpiece. . 

c) Performing straight turning operation on specimen by 
TiAlN coated tungsten carbide with various cutting 
environments involving various combinations of process 
control parameters like: spindle speed, feed and depth of 
cut. 

d) Determining the cutting forces while turning by using 
Kistler dynamometer has a dynoware software interface. 

e) Measuring surface roughness and surface profile with the 
help of a portable stylus-type profilometer, Talysurf 
(Taylor Hobson).  

f) Calculating the material removal rate (MRR=V.f.d). 
 The working ranges of the parameters for subsequent design 
of experiment, based on Taguchi’s L9 Orthogonal Array (OA) 
design have been selected. Machining tests were carried out 
on CNC lathe (Lead Well 6). The setup is shown in Fig. 1 and 
Fig. 2. The coated (TiAlN) tungsten carbide inserts were 
clamped in a rigid tool holder. The process variables with their 
levels are listed in Table 1. The experimental data (Table 2) 
have been normalized using Equations (1) and (2). Normalized 
experimental data are shown in Table 3. For surface roughness 
and cutting force (Lower-the-Better) LB; and for material 
removal rate (Higher-the-Better) HB criteria have been 
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selected. After data normalization, a check has been made to 
verify whether the responses are correlated or not. The 
coefficient of correlation, between two responses, has been 
calculated using Equation (4). Table 4 represents 

 

 

 

Fig. 1 CNC lathe machine 

Fig. 2 The enlarge view of workpiece and cutting insert setup 

Pearson’s correlation coefficients. It has been observed that, 
all responses are correlated to each other. In order to eliminate 
response correlations, Principal Component Analysis (PCA) 
has been applied to derive three independent quality indices to 
derive three independent quality indices (called principal 
components), Table 5 presents Eigen values, eigenvectors, 
accountability proportion (AP) and cumulative accountability 
proportion (CAP) computed for the all responses indicators. It 
has been found that first three principal components; PC1, 
PC2, PC3 can take care of 55.6%, 28.2% and 16.2% variation 
in data respectively. Correlated responses  

Table 1: Process variables and their limits 

 Process variables 
Values in 

coded form 
Cutting Speed, 

V (m/min) 
Feed, f 

(mm/rev) 
Depth of cut, d 

(mm) 
-1 (A) 50 0.08 0.25 
0 (B) 100 0.12 0.5 

+1 (C) 150 0.16 0.75 
 

Table 2: Machining responses of MMCs 

 Response variables 
Sl. No. Surface 

roughness 

Ra, 
 m

 

Cutting force 
Fc (N) 

MRR 
3

min

mm 
 
 

1 2.24 75.4 320 
2 3.87 116.2 720 
3 2.54 231.0 1280 
4 1.98 95.91 640 
5 0.95 152.4 1440 
6 2.21 67.59 2560 
7 0.83 108.3 960 
8 1.29 60.59 2160 
9 1.18 115.8 3840 

 

Table 3: Normalized values *( )iX k  of responses  

S. No. Ra Fc MRR 
Ideal Value 1.0000 1.0000 1.0000 

1 0.37054 0.80358 0.08333 
2 0.21447 0.52143 0.18750 
3 0.32677 0.26229 0.33333 
4 0.41919 0.63174 0.16667 
5 0.87368 0.39757 0.37500 
6 0.37557 0.89643 0.66667 
7 1.00000 0.55946 0.25000 
8 0.64341 1.00000 0.56250 
9 0.70339 0.52323 1.00000 

 
Table 4: Correlation among responses 

S. No. Correlation between 
responses 

Pearson correlation 
coefficient 

Comment 

1 R and Fc 0.158 Both are 
correlated 

2 Ra and MRR 0.458 Both are 
correlated 

3 Fc and MRR 0.364 Both are 
correlated 

 
have been transformed into three independent quality indices 
(major principal components). These have been furnished in 
Table 6 using Equation (5). 0 ( )i k (Quality loss estimates) for 

all three principal components have been calculated using 
Equations (7-9), and presented in Table 7. Grey relational 
coefficients of individual principal components have been 
calculated using Equation (6) and the overall grey relational 
grade has been calculated using Equation (10); their values are 
furnished in Table 8. Thus, the multi-criteria optimization 
problem has been transformed into a single objective 
optimization problem using the combination of Taguchi 
approach and grey relational analyses. The main effect plot 
[HB (higher-the-better)] for the overall grey relational grade is 
represented graphically in Fig. 3. With the help of the Fig. 3, 
optimal parametric combination has been determined. The 
optimal factor setting becomes 1 1 0V f d .The corresponding 

factor combination is said to be close to the optimal result has 
been verified through confirmatory experiment. 

Table 5: Eigenvalues, eigenvectors, accountability proportion 
(AP) and cumulative accountability proportion (CAP)  

 PC1 PC2 PC3 
Eigenvector Ra 

Fc 
MRR 

0.568 
0.494 
0.659 

-0.607 
 0.792 
-0.070 

-0.556 
-0.360 
 0.749 

Eigenvalue  1.6682 0.8465 0.4852 
AP  0.556  0.282  0.162 

CAP  0.556  0.838  1.000 
 

Table 6: Principal components (PC) in all L9  
OA experimental observations 

S. No. ( )iY k ( )iY k  ( )iY k
Ideal value 1.721 0.115 -0.167 

1 0.6623 0.4057 -0.4329 
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6. CONCLUSION 

The followings are the major conclusions:  

1. The optimized cutting condition that gives lower surface 
roughness, cutting force and improve MRR when 
machining Al-MMC have been identified: Cutting speed 
‘V’150 m min-1, Feed ‘f’ 0.08 mm/rev and Depth of cut 
‘d’ 0.5 mm. 

2. The surface roughness improves with the increase of the 
cutting speed whereas increasing feed adversely affects 
the surface roughness. 

3. The cutting force almost linearly varies with the feed and 
at low cutting speed the cutting force is higher. 

4. The machining parameters for turning process are 
optimized using PCA coupled Taguchi’s technique for 
minimizing the surface roughness and cutting force and 
maximizing material removal rate 

5. The optimization technique has been validated 
experimentally and reveals low values of error. 
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